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Summary

A 13- by 13-in. adaptive solid-wall test section

has been installed in the circuit of the Langley 0.3-

Meter Transonic Cryogenic Tunnel in place of the 8-

by 24-in. slotted-wall test section. This new test sec-

tion is configured for two-dimensional airfoil testing.

Tile top and bottom walls are flexible and movable,

whereas the sidewalls are rigid and fixed. The test

section has a turntable to support airfoil models, a

survey mechanism to probe the model wake, and pro-

vision for a sidewall boundary-layer control system.
The wall adaptation strategy employed requires the

test section wall shapes associated with uniform test
section Mach number distributions. Calibration tests

with the test section empty were performed with the

top and bottom walls linearly diverged to approach

a nearly unifornl Mach number distribution. Pres-
sure distributions were measured in the contraction

section, the test section, and the high-speed diffuser

over a Mach number range from 0.20 to 0.95 and a
Reynolds number range from 10 x 106 to 100 x 106 per

foot. The fluctuations in the sidewall static pressure

measurements are significantly lower in the adaptive
solid-wall test section than in tile slotted-wall test

section used previously.

Introduction

The artificial constraint of wind-tunnel test sec-

tion walls on the flow field about an airfoil model

introduces errors in the simulation of "free air" con-

ditions. Corrections for test section wall interference

can be applied to wind-tunnel test data after the

test. (See ref. 1.) Test section wall interference can

be reduced by using an adaptive wall test section.
Adaptive wall test sections have been in use as far

back as the 1940's at the National Physical Labo-

ratory in England. (See ref. 2.) Modern adaptive
wall test sections were put on a sound technical foot-

ing by Sears in reference 3. He demonstrated that

wall interference can be eliminated by matching two

independent flow field parameters on a control sur-

face. The matching is accomplished in different ways

depending on the type of adaptive wall test section.
(Sec ref. 3.) The flow field parameters at the control

surface can be modified by varying the wall poros-
ity, the plenum pressure behind a porous wall, or the

shape of a solid wall. The NASA Langley 0.3-Meter

Transonic Cryogenic Tunnel (0.3-m TCT) uses the
adaptive solid-wall test section concept.

The adaptive wall test section design for the 0.3-m

TCT is based on work done at the University of

Southampton in England. (See ref. 4.) The new test
section was installed in the tunnel circuit in 1985

replacing the 8- by 24-in. slotted-wall test section.

This report presents a description of the adaptive

wall test section, the instrumentation and techniques

used during the calibration, and the results from the
calibration tests.

Symbols and Abbreviations

A cross-sectional area, ft 2

BLC boundary-layer control

D diameter

GN2 gaseous nitrogen

H boundary-layer shape factor

i.d. inside diameter

LN2 liquid nitrogen

M l local Mach number

M_:, free-stream Mach number

AM deviation of local Math number

from reference value

o.d. outside diameter

Pt stagnation pressure, psi

;5 average static pressure, psi

Ap root-mean-square deviation of pres-

sure from average static pressure,

psi

unit Reynolds number per foot

station nmasured from center of

turntable, positive in streamwise
direction

stagnation temperature, K

transonic cryogenic tunnel

horizontal distance measured

from center of turntable, positive
downstream, in.

vertical distance measured from

center of turntable, positive up,

in.; or wall displacement, positive
outward, in.

average wall divergence angle,

positive outward, deg.

boundary-layer displacement thick-

ness_ in.

orientation of rows of orifices on

turntable

standard deviation of Mach number

from linear curve fit

R

sta.

TCT

X

CrM



longitudinal Mach number gradient,

in-1

dz local wall slope

0.3-Meter Transonic Cryogenic Tunnel

The Langley 0.3-Meter Transonic Cryogenic Tun-

nel (0.3-m TCT) is a fan-driven, cryogenic pressure
tunnel that uses gaseous nitrogen (GN2) as a test

gas. It is capable of operating at stagnation temper-
atures from 327 K (130°F) to about 80 K (-316°F)

and at stagnation pressures from 1.2 to 6.0 atm (17.6

to 88.0 psia). The test section Mach number range
is from 0.20 to 0.95. From 1976 until 1985, the

0.3-m TCT was frequently used to study airfoil aero-

dynamic characteristics at high Reynolds numbers.

During that time, the tunnel had an 8- by 24-in. test

section with slotted top and bottom walls. Details of

the development of the 0.3-m TCT and the slotted-

wall test section may be found in reference 5.

The adaptive wall test section replaced the 8- by

24-in. slotted-wall test section in 1985. During the

installation of the new test section, the tunnel cir-

cuit was modified to improve the tunnel operating
characteristics. A new contraction section was in-

stalled because the adaptive wall test section had a

different cross section. A longer high-speed diffuser

was installed to reduce flow separation in the diffuser.

(See ref. 5.) Figure 1 shows the layout of the tunnel
circuit with the 13- by 13-in. adaptive wall test sec-

tion installed. A photograph of the upper leg of the

tunnel circuit is presented in figure 2. Details of the

adaptive wall test section, the new contraction sec-

tion, and the new high-speed diffuser are presented
in reference 6. An overview is presented below.

Adaptive Wall Test Section

The layout of the adaptive wall test section with

the left sidewall of the plenum removed is presented

in figure 3. A photograph of the interior of the

plenum is shown in figure 4. All structural compo-
nents of the test section are aluminum. The test

section is configured for two-dimensional airfoil test-

ing with the model supported by two turntables.

The angle-of-attack drive system, located outside the
plenum, rotates the turntables. A total pressure rake

traverses vertically at one of three positions down-
stream of the model.

Details of the flow region of the test section are

presented in figure 5. The test section is 13 in. by
13 in. at the entrance. All four walls are solid. The

sidewalls are rigid and fixed with no divergence. The

top and bottom walls are flexible and movable. The

stainless steel, flexible walls are anchored to the up-
stream bulkhead of the test section. Each wall is

71.70 in. long. The usable portion of the test sec-
tion extends from station -29.75 to station 25.05.

Eighteen independent jacks control the shape of this

portion of each flexible wall. The jack stations for

the top and bottom walls, listed in chart A, are the
same for both walls. The nonuniform jack spacing

provides finer control of the wall shape in the re-

gions above and below the model. The shape of the

fully adapted flexible walls depends on the model lift

and blockage. A transition region is needed between

the end of the usable test section (station 25.05)

and the fixed-angle, high-speed diffuser section (sta-

tion 40.95). (See fig. 5.) The walls are bent outward
at the end of the usable test section. With the walls

undeflected, the outward bend is 4.1 °. This portion

of each flexible wall is controlled by three jacks. The
downstream end of each flexible wall is held at an

angle of 4.1 ° by a sliding joint. The angle of the

joint matches the divergence angle of the first piece
of the high-speed diffuser. The jacks are numbered

from upstream to downstream. The first jack on the

top flexible wall is number 1 and the first jack on the
bottom flexible wall is number 22. A static pressure

orifice is located at each jack station at the midspan

position of each flexible wall. In addition, a static
pressure orifice is located in the top and bottom of

the opening in the upstream bulkhead of the test

section at the midspan position. The static pressure

orifice locations for the top and bottom walls in the
test section are listed in table 1.

Chart A

x station,
Jack in. Jack

1, 22 -26.00 11, 32

2, 23 -20.25 12, 33

3, 24 -15.25 13, 34

4, 25 -11.25 14, 35

5, 26 -8.25 15, 36

6, 27 -6.25 16, 37

7, 28 -4.75 17, 38
8, 29 -3.25 18, 39

9, 30 1.75 19, 40

10, 31 -.25 20, 41

21, 42

x station,
in.

1.25

2.75

4.75

6.75

8.75

11.75

15.75

20.75

a25.75
a30.75

a36.75

aTransition between test section

and diffuser.

A turntable in each sidewall can support a
two-dimensional airfoil model. The center of the



turntablewasusedasthe referencepositionfor de-
terminingthe distancesto the variouscomponents
in thetunnel.Custommodelmountingblockswere
usedto adapteachairfoil modelto the turntables
asshownin figure6. For mostof the test section
calibration,themodelturntableswerereplacedwith
solidturntableswithstaticpressureorificesarranged
inahorizontalrowandinaverticalcolumnasshown
in figure7. Theseorificelocationsarelistedin ta-
ble1. Forthesetests,thecalibrationturntableswere
fixedwith the horizontalrowalignedwith theflow
direction.

Staticpressureorificeswereinstalledon thetest
sectionsidewallforthecalibrationandtunnelopera-
tionsasshownin figure7. A horizontalrowof static
pressureorificeswasinstalledalongthecenterlineof
theright sidewall.Thelocationsof theseorificesare
listedin table1. Columnsof staticpressureorifices
arelocatedonbothsidewallsat station-26.75.The
orificesarelocatedat +4.00 and +2.00 in. from the

centerline on the left wall and +6.00, +4.00, +2.00,

and 0 in. from the centerline on the right wall. These
orifices were used to measure the static pressure for

the Mach number calculations during the shakedown

tests and to provide a reference for the static pres-

sure instrumentation. The pressures measured from
the orifices located at +6.00 in. were influenced by

the flexible wall movement and the flow in the test

section corner. Hence, the measurements from these
orifices were excluded from the calibration. Three

columns of static pressure orifices are located on the

right sidewall roughly opposite the three possible tip
locations of the wake rake probes at stations 10.75,

15.75, and 20.75. The eight orifices in each column

are located at +4.00, +3.00, =t=2.00, and +1.00 in.
from the centerline.

During part of the calibration, the right model
turntable was used instead of the calibration turn-

table. A 15-tube, boundary-layer total pressure rake

was mounted in the model mounting block. A sketch

of the rake is presented in figure 8 and a photograph

in figure 9. The tip of the rake tubes was located at
station -1.25.

The test section photograph in figure 4 shows

a rake drive system that translates the wake rake

support block. The support block has provisions for

mounting a wake rake at one of three stations on

the left sidewall (12.50, 17.50, or 22.50) as shown

in figure 5. Figures 10 and 11 show details of the
wake rake and its installation in the center position.

The rake has six total pressure probes and three

static pressure probes. This rake was installed at the

forward position for some of the calibration tests.

A sidewall boundary-layer control (BLC) system

may be used with the adaptive wall test section. The

system was retained from the previous 8- by 24-in.
slotted-wall test section. Details of the BLC system

as used in the previous test section may be found in

reference 7. When the BLC system is used, porous

plates are installed on the sidewalls upstream of the
turntables as shown in figure 5. Each porous plate

measures 14 in. by 7 in. and is centered 14.25 in. up-
stream of the center of the turntable. Ductwork con-

nects the backside of the porous plate to the BLC sys-

tem. Pressures below the test section static pressure

are applied to the nonflow side of the plate to remove

all or part of the sidewall boundary layer. The sys-

tem operates in either an active or passive mode. In

the passive mode, the backside of the porous plates
is vented to the atmosphere through a flow control
valve. The mass removal rate is limited by the differ-

ence between the test section static pressure and the

atmospheric pressure. In the active mode, a compres-
sor is connected to the backside of the porous plates.

The compressor exhaust is injected back into the tun-
nel circuit downstream of the test section as shown

in figures 1 and 2. The mass removal rate is limited

by the compressor capability. For these calibration

tests, the BLC system was not used and the porous

plates were replaced with solid plates. Pressure ori-
fices were installed in the solid plate on the right side

to provide additional pressure measurements on the

right sidewall as shown in figure 7.

Modified Contraction Section

The contraction section for the adaptive wall test

section is split into two components as shown in fig-
ures 1 and 12. The first component changes the cross

section from a circle to a 16-sided polygon to an 8-

sided polygon. The second component changes the

8-sided polygon into a square. The contraction ratio

is 10.7:1, based on the nominal 13- by 13-in. cross

section of the test section. Eight instrument mount-

ing blocks are available for installing probes to mea-

sure total temperature and total pressure at station

-105.53. Two total pressure probes, located at about
4 o'clock and 10 o'clock when looking upstream,

are manifolded together to provide the total pres-

sure for the Mach number calculations. The probes,

made from 0.125-in. o.d. tubing, extend 6.00 in. into

the stream from the sidewall and 2.00 in. upstream.

Static pressure orifices are installed in the walls of

both contraction section components. The measured

orifice locations are presented in chart B. The screen

section, located upstream of the contraction section,
is 48 in. in diameter. It supports three 40-mesh (per
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inch) screensmadewith 0.0065-in-diameterMonel
metalwireto reducetheturbulence.

Chart B

x station, x station,
in. in.

106.2

102.2

98.2

94.7

-90.9

87.0

-83.2

79.7

76.0

62.4

-52.2

48.2

42.1

38.2

34.1

Modified High-Speed Diffuser

The new high-speed diffuser consists of three sec-
tions as shown in figure 1. The first section, shown in

figure 13, is 24 in. long and changes the cross section

from a rectangle to a circle. The design of the sec-

tion provides a nearly constant cross-sectional area

distribution. The second section is 60 in. long with a

circular cross section and a divergence angle of 1.2 °.

The third section is 110.5 in. long with a circular
cross section and a divergence angle of 3.0 °. The di-

vergence angles in the diffuser were kept small in an

effort to prevent flow separation for tile expected test

conditions. The third section has four ports for rein-

jection of gaseous nitrogen when the active sidewall

boundary-layer control system is in use. The static

pressure orifice locations on the high-speed diffuser
are listed in chart C.

Chart C

x station, x station,
in. in.

45.4 102.3

49.4 108.3

53.4 114.3

57.4 120.3

61.4 138.4
71.3 156.4

78.2 174.4

84.2 192.4

90.2 210.4

96.2 228.4

4

Instrumentation

Two types of transducers are used for the pres-
sure measurements to obtain accurate values over the

large range of tunnel test pressures. They are quartz
Bourdon tube transducers and variable-capacitance

transducers. The four quartz transducers measure

the total and static pressures for the calculation of
the Mach number in the test section and reference

pressures for the differential total and static pressure

measurenmnts. Since the quartz transducers mea-

sure differential pressure, each is referenced to a vac-

uum to function as an absolute pressure device. The

analog output from each of these transducers is con-

verted to digital form by dedicated digital voltmeters.

The variable-capacitance transducers are used for
the research measurements. These transducers also

measure differential pressure. Each transducer is

connected to a reference pressure that is measured
by one of the above quartz pressure transducers. An

autoranging signal conditioner with seven ranges is
dedicated to each transducer. The autoranging ca-

pability keeps the analog output signal at a high

level even when the transducer is operating at the

low end of its range. The analog output signal and
the gain from the signal conditioner are converted

to digital form by the data acquisition system of the
tunnel described in reference 5. During the calibra-

tion tests, dedicated variable-capacitance transduc-

ers were used for the static pressure measurements

on the left and right turntables and the left and right

sidewalls. Five variable-capacitance transducers were
used with scanning valves to measure the static pres-

sures on the test section top wall, the test section

bottom wall, the contraction section, the high-speed
diffuser, and the boundary-layer rake.

The tunnel stagnation temperature is measured
with a platinum resistance thermometer located at

station 105.53. The analog signal from this trans-

ducer is converted to digital form by a dedicated dig-
ital voltmeter.

Description of Calibration Tests

The calibration tests were divided into two parts.

During the first part, test procedures were d(_veloped
and the boundary-layer measurements on the test

section sidewall were recorded. The development

of test procedures involved identifying the orifices
to be used for the measurement of the free-stream

static pressure, the test parameters to be varied,

and the type of shape to be used for the top and

bottom walls during the calibration. The type of

wall shapes that were considered were straight and

parallel, straight and linearly diverged, and nonlinear

(adapted). During the second part, detailed static



pressuremeasurementsfrom the test section,the
contractionsection,andthehigh-speeddiffuserwere
recorded.

Part 1: Developmentof TestProcedures
Thelocationin thetestsectionofthefree-stream

staticpressuremeasurementwaschosenusingguide-
linessimilarto thoseusedto selectthe locationin a
conventional tunnel. The measurement for the free-

stream static pressure should not be influenced by the

presence of a model or the movement of the flexible

walls. Different combinations of static pressure ori-

fices in the test section were evaluated. The pressures
from the orifices located on both sidewalls at station

26.75 (see fig. 7) were influenced by the flexible wall
movement and did not reflect free-stream conditions.

An orifice, located in the top of the opening for the

flow in the upstream bulkhead of the test section at

station -31.25, was used to measure the free-stream

static pressure for all results reported herein.
The test parameters generally used by the re-

search staff of the 0.3-m TCT are normally the Mach

number and Reynolds number. The parameters used

for tunnel control are the stagnation pressure, stag-

nation temperature, and fan speed. The calibration

was expected to depend primarily on the Mach num-

ber and Reynolds number and not on the combina-

tion of the stagnation temperature and pressure used

to obtain the particular Mach number and Reynolds
number. The local Mach number distributions in

the contraction section, test section, and high-speed
diffuser were measured for a constant unit Reynolds

number of 20 × 106 per foot but with different com-

binations of stagnation temperature and pressure.

The results, presented in figure 14 for Mach numbers

of 0.50 and 0.75, show that there is no measurable

effect of temperature or pressure on the local Mach
number distribution. The small differences at the be-

ginning of the contraction section are probably due

to small errors in the measured static pressures lead-

ing to large errors in the very low local Mach number.

The differences are not attributable to the temper-

ature or pressure but to the scatter associated with
measurement noise. Since the calibration measure-

ments depend primarily on the Mach number and
Reynolds number, these variables were selected as

the test parameters for the calibration.

The wall adaptation software was based on the

software developed at the University of Southampton

in England and reported in reference 8. The software

uses the wall shape that produces a uniform Mach

number distribution for its initialization. A library of

wall shapes for different free-stream Mach numbers

and Reynolds numbers is required. Three different

types of wall shapes were evaluated: straight and

parallel, straight and linearly diverged, and nonlinear

(adapted). Typical results for these three types are
presented in figure 15 at a Mach number of 0.70

and a unit Reynolds number of 10 × 106 per foot.

The boundary-layer buildup on the test section walls

leads to a longitudinal Mach number gradient along
tile test section. Results for the walls set to 0-in.

displacement (straight, parallel walls) clearly show

the gradient (fig. 15(a)). The wake rake was installed

in the forward position (station 12.50) when these

measurements were taken. This explains the sudden
increase in the local Mach number near that station.

The right sidewall Mach number generally increases

smoothly. The sidewalls are thick and rigid and have

a flat, smooth surface. A smooth increase in the

Mach number would be expected.

The Mach numbers along the top and bottom

walls tend to have a lot of scatter. The top and
bottom walls are thin and flexible. The surface

is smooth, but problems with the current wall-
attachment system can lead to a wavy surface. In

the current arrangement, plates are bolted between
the wall-movement drive rods and the backside of

the flexible wall. Small misalignments between the

drive rods and the wall attachment can lead to large

moments at the wall attachment. The moment gen-
erated at each wall-attachment location results in an

"S" shape or waves in the wall displacement between

the jacks. Additional details are presented in ref-
erence 6. Waves in the wail can lead to scatter in

the measured pressure and the calculated Mach num-
ber distributions on the flexible walls. Problems as-

sociated with the installation of the orifices in the

thin wall or unsteadiness in the flow coupled with

the asynchronous measurements from the scanning
valves can also be a cause of the scatter. A suffi-

ciently long settling time was used after stepping to

each port to eliminate insufficient dwell time as the
cause of the scatter.

The first solution to improve the longitudinal

Maeh number distribution was to diverge the top

and bottom walls linearly. The divergence required
to eliminate the gradient was estimated from calcula-

tions of the growth of the displacement thickness of a

turbulent boundary layer at selected Mach numbers

and unit Reynolds numbers. Results with the walls

linearly diverged are shown in figure 15(b). Note that

positive wall displacement has been defined as posi-

tive outward to compare the top and bottom wall dis-

placements directly. The variation of the local Mach
number from the free-stream Mach number is much

smaller for the linearly diverged walls in figure 15(b)

than for the parallel walls in figure 15(a). As before,
the scatter in the local Mach number for the sidewalls

is less than that for the top and bottom walls, and
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the Machnumberdeviationincreasessharplynear
thewakerake.Duringresearchoperations,thewall
adaptationalgorithmwouldadaptfor thewakerake
blockageat whateverpositionit wasinstalled.The
detailedcalibrationpressuremeasurementsshouldbe
obtainedwith thewakerakeremoved.

The nextsolutionto improvethe Machnumber
distributionwasto allowthewall adaptationalgo-
rithm to determinethe flexiblewall shape. Only
oneiterationof the algorithmwasused. This led
to thepartiallyadaptedresultsof figure15(c).Note
that thewall displacementis not monotonicallyin-
creasingandthat thereis still somescatterin the
Machnumberdistribution.Nearthewakerake,the
Machnumberdeviationonthetopandbottomwalls
is muchsmallerafter oneiterationof the adapta-
tionalgorithm.Thewallshapesthatcorrespondto a
uniformMachnumberdistributionat variousMach
numbersand Reynoldsnumbersareusedasinitial
conditionsbythe walladaptationalgorithmwhena
modelis present.Thewallshapethat corresponds
to a uniformMachnumberdistributionisdefinedas
an "aerodynamicallystraightwall." Theadaptation
processcomputesa curvedwallshapeto eliminate
the lift and blockageinterferencefromwhateveris
presentin thetest section.Therequiredwallshape
that mustbesetbythejacksis thesumoftheaerody-
namicallystraightwallshapeandcurvedwallshape
fromthe adaptationprocess.

Shakedowntestswith an airfoil modelinitially
usedthe partially adaptedresultsas the aerody-
namicallystraightwall shape.For manymoderate
test conditions,the requiredwall shapescouldnot
be achievedbecausethe load requiredto position
the wall exceededthe capabilityof the wall posi-
tioninghardware.Thelinearlydivergingwalls,such
asthoseshownin figure15(b),werethen usedas
theaerodynamicallystraightwall shapeduringad-
ditional shakedowntests. Thesesubsequenttests
demonstratedthat the linearlydivergingshapesal-
lowtestingwithamodel.Thelinearlydivergingwall
shapeswereselectedfor usein thecalibration.

The boundary-layercharacteristicson the test
sectionsidewallat the modelareneededto correct
airfoilresultsfor sidewallinterference.A boundary-
layerrakewasinstalledjust downstreamofthecenter
of theright turntable.Theboundary-layerthickness
exceededtherakeheightfor someof the testcondi-
tions.A technique,describedin reference9, wasde-
velopedto extrapolatetherakemeasurementsto the
freestreamandto computethe desiredboundary-
layercharacteristics.

Part 2: Calibration Pressure
Measurements

The second part of the calibration tests deter-
mined the test section Mach number distribution us-

ing the linearly diverged walls. The linear divergence

was selected by the adaptive wall test section opera-
tor before acquiring the test section calibration data.

The selected wall divergence generally increased with

Mach number and unit Reynolds number. The tests

were conducted at six unit Re_znolds numbers per
foot: 10 x 106, 20 x 106, 40 x 10 U, 60 x 106, 80 x 106,
and 100 x 106. At each unit Reynolds number, the

Mach number was varied from 0.20 to 0.95. Some

of the Mach numbers could not be achieved because

they were outside the tunnel operating envelope. The
wake rake was removed from the test section for these
tests.

The tunnel can operate at high pressure and low

temperature where the test gas behavior measurably
departs from that of an ideal gas. Therefore, all
results presented herein have been corrected for the

real gas effects using the procedure of reference 10.

Presentation of Results

The wall static pressure measurements are pre-
sented as plots of the local Mach number distribu-

tion as a function of the longitudinal position for the

streamwise rows of orifices in figures 16 to 19 and as a
function of vertical position for the vertical columns

of orifices in figure 19. Detailed plots of the test
section wall shape and the Mach number deviation

from the free-stream value are also presented for each

combination of Mach number and Reynolds number
tested in figures 20 to 25. An index to the results is

presented in the following table:

Figure
Mach number distributions in test section:

Top flexible wall ................ 16

Bottom flexible wall .............. 17

Right sidewall and turntable ........... 18

Left turntable ................. 19
Test section wall shape and deviation

in local Mach number:

R = 10 × 10 6 per foot .............. 20

R -- 20 x 106 per foot .............. 21

R -- 40 x 106 per foot .............. 22

R = 60 x 106 per foot .............. 23

R = 80 × 106 per foot .............. 24

R-- 100 x 106 per foot ............. 25

Mach number distributions in contraction section . . . 26

Mach number distributions in high-speed diffuser . . . 27
Boundary-layer characteristics on test section

sidewall .................... 28

Fluctuating pressure distribution on test section
sidewall .................... 29



Results and Discussion

Maeh Number Distributions on Top and
Bottom Walls

The longitudinal Mach number distributions on
the centerline of the flexible walls are presented in

figure 16 for the top wall and in figure 17 for the
bottom wall. The walls were linearly diverged and

the wake rake was removed. The average wall di-

vergence angle _ was set as a function of both the
Mach number and the Reynolds number. The mea-

sured wall divergence is listed in table 2. For Mach

numbers of 0.70 and below, the local Mach number

distribution is relatively fiat up to the location of the

4.1 ° bend in the walls. There is a small gradient

and scatter in the Mach number, both of which in-
crease with Mach number. At a Mach number of 0.95

and R = 20 × 106 per foot, the wall divergence was

not sufficient to prevent a rapid increase in the Mach

number that was terminated by a shock in the front

part of the test section. Increasing the divergence
at R = 60 x 106 per foot reduced the Mach number

gradient and eliminated the shock.

At the higher Mach numbers (generally 0.75 and

above), there are noticeable oscillations in the longi-
tudinal Mach number distribution. These oscillations
occur near stations -8.00 and 19.25 where the thick-

ness of the flexible walls changes. They appear at all

the Reynolds numbers and become more severe as
the Mach number increases. Since most airfoil test-

ing occurs at or below a Mach number of 0.80, the
oscillations in the Mach number distribution should

not significantly impact airfoil tests.
The local Mach number decreases over the rear

part of the test section. The flexible walls bend out-

ward 4.1 ° at station 25.05. Three jacks set the wall
contour between the bend and the end of each flexible

wall. These three jacks were set to reduce the wall
deflection linearly to 0 at the end of the flexible wall.
The flow area increases with downstream distance

although there is an increase in the local wall cur-

vature near the bend. The local Mach number just

downstream of the bend at station 25.75 is higher

than the Mach number measured just upstream. As
the flow accelerates around the bend, the local Mach

number increases. The outward displacement of the

first jack in this diverging section should be adjusted
to eliminate the increase in the Mach number.

Maeh Number Distributions on Sidewall

and Turntable

The longitudinal Mach number distributions on

the right sidewall and turntable are presented in
figure 18. Unlike the top and bottom wall results, the

sidewall results have a smaller longitudinal gradient

and much less scatter. The sign and size of the

gradient were determined by the linear divergence.
The small gradient in the Mach number can be

eliminated by adjusting the linear divergence of the

top and bottom walls.

The local Mach number distributions along the
horizontal and vertical rows of orifices on the left

turntable are presented in figure 19. The measure-

ments on the left and right turntables were selected

for further analysis since they are not affected by

the surface waviness problems associated with the

top and bottom flexible walls. A linear least-squares

curve fit was applied to the local Mach number dis-

tributions on the left and right turntables. From

the curve fit, the longitudinal Mach number gradi-

ent dMl/dx and the standard deviation of the results

from the curve fit _rM were determined. The stan-

dard deviation was computed using the difference
from the linear curve fit rather than the mean be-

cause the gradient could be eliminated by the proper

selection of the divergence of the top and bottom
walls.

The results of the curve fit are presented in table 2

along with the wall divergence for each Mach num-

ber and Reynolds number. The longitudinal gradient

and scatter in the Mach number are larger on the left

turntable than on the right turntable. The distribu-
tion in the vertical direction is flat with similar scat-

ter. The standard deviation of the Mach number on

the left wall is almost always higher than that on the
right wall. For Mach numbers less than or equal to

0.80, the largest average of the standard deviations
of the Mach number on the two turntables is 0.0021.

The standard deviation is smallest at a Mach number

of about 0.50 and increases rapidly for Mach numbers

above 0.80. There are small longitudinal gradients

in the Mach number. Using the average of the Mach

number gradients, the change in Mach number along
an airfoil model with a 10-in. chord is less than 0.0036

for Mach numbers less than or equal to 0.80. Thus,

the flow field in the model region, as measured on

the left and right turntables, has small longitudinal

gradients and small standard deviations in the local
Mach number. These levels will not limit airfoil test-

ing at Mach numbers up to 0.80. The longitudinal

gradient should be reduced by adjusting the top and

bottom wall divergence. These refined shapes would

be used by the wall adaptation process to set the wall

shape for tests with models and to define more ac-

curately the reference wall shape needed to compute

any residual top and bottom wall interference.

Test Section Wall Shape and Mach
Number Distribution

The longitudinal Mach number distribution in the

test section is dependent on the shape of the top and



bottomflexiblewalls. The flexiblewall shapeand
the deviationof the local Machnumberfrom the
free-streamMachnumberarepresentedin figures20
to 25. Thewakerakewasremovedfor thesetests.
As notedabove,thedeviationof thesidewallMach
numbersissmallerandhaslessscatterthan thetop
andbottomwalls.Thescatterincreasesdramatically
for the Machnumbersabove0.80. Any gradients
remainingcanbeeliminatedby changingthelinear
divergenceof thewallsslightly.

Mach Number Distributions in

Contraction Section

The longitudinal Mach number distributions on

the wall of the contraction section are presented in

figure 26. In general, the Mach number smoothly
increases through the contraction with a small over-
shoot at station -38.20. There is some scatter at

the beginning of the contraction section where small

errors in tile measured pressure lead to large errors
in the Mach number. It should be noted that the

desired Mach number is reached near station -38.20

providing a run of about 7 in. at a constant Mach
number before the flexible walls are reached.

Mach Number Distributions in

High-Speed Diffuser

The longitudinal Mach number distributions on

the wall of the three sections of the high-speed dif-

fuser are presented in figure 27. The rear portion of

the flexible wall in the test section (from station 25.05

to station 40.95) diverges outward 4.1 ° so that the
cross-sectional area at the end of the test section

(station 40.95) is larger than the area at the end of
the contraction section where the free-stream Mach

number is measured. The local Mach number de-

creases downstream of the 4.1 ° bend. Thus, the local

Mach number at the entrance to the high-speed dif-
fuser is less than the free-stream Mach number. The

largest measured local Mach number on the wall of
the first diffuser section occurs at station 61.40 where

the computed cross-sectional area (shown in fig. 13)
is minimum. At the higher Mach numbers, there is

a significant decrease in the local Mach number near
station 50.00. The local Mach number distributions

in the second and third sections of the diffuser show

a smooth decrease in the local Mach number with no

indication of separation.

Boundary-Layer Characteristics on Test
Section Sidewall

The test section boundary-layer characteristics

were determined from the total pressure measure-

ments obtained from the rake mounted to the right

turntable. The method of reference 9 was used to

compute the boundary-layer displacement thickness
and the shape factor, and the results are presented

in figures 28(a) and 28(b). The boundary-layer dis-
placement thickness increases with the Mach number

and generally decreases with the Reynolds number.

The shape factor also increases with the Mach num-

ber, but the decrease with Reynolds number is very
small.

Fluctuating Pressure Distribution on Test
Section Sidewall

After the tunnel calibration was complete, William

B. Igoe of the NASA Langley Research Center took

fluctuating pressure measurements on the sidewall.

These measurements, which were taken as part of

the requirements for a proposed doctoral dissertation

to be submitted to the George Washington Univer-

sity, are presented in figure 29. These results are
compared with similar measurements from the 8- by

24-in. test section that were reported in reference 11.

The fluctuating pressures have been reduced to about

one-half the level found in the 8- by 24-in. slotted-
wall test section.

Concluding Remarks

An adaptive wall test section has been installed

in the circuit of the Langley 0.3-Meter Transonic

Cryogenic Tunnel. The flexible wall shape and the

longitudinal Mach number distribution have been
measured on the test section walls at Mach numbers

from 0.20 to 0.95 and Reynolds numbers from 10 x 106

to 100 × 106 per foot. Linearly diverging the test

section walls reduced the longitudinal gradient in
the Mach number. The local Mach number on

the flexible top and bottom walls showed a larger

gradient and more scatter than on the sidewalls. The
new high-speed diffuser shows no signs of separation

in that part of the circuit. The sidewall fluctuating

pressure has been reduced to about one-half the level

measured in the previous 8- by 24-in. slotted-wall
test section.

NASA Langley Research Center
Hampton, VA 23665-5225
September 28, 1990
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Table 2. Mach Number Gradient and Standard Deviation

GM × 103 _x / x 103, in -1

R x 10 -6, ft -1 Moo Right

10 0.201 1.46

20

4O

6O

8O

0.201

.500

.600

.701

.751

.802

.799

.851

.900

.946

0.500

.601

.700

.750

.803

.850

.901

0.503

.598

.702

.750

.801

.853

.902
.955

0.501

.601

.7O5

.750

.800

.851

.902

0.702

.753

.803

.852

.902

100

1.49

.95

1.04

1.41

1.43

1.55
1.56

1.68

2.39

3.49

0.99

1.06

1.40

1.54

1.70

1.78

1.83

1.01

1.15

1.56

1.63

1.83

1.98

2.46
2.90

1.04
1.29

1.73

1.54

1.74

2.25

2.43

1.65

1.48

1.57

1.75

2.07

Left

2.10

2.32

1.48

1.57

1.70
1.82

1.94

1.94

2.05

2.41

3.25

1.47

1.59

1.80

2.10

2.27

2.33

2.86

1.66

1.81

2.04

2.13

2.34
2.44

2.64

2.99

1.80

1.92

2.13

2.34

2.46

2.53
2.82

2.09

2.40

2.51

2.70
2.82

Right Left
-0.046 0.348

0.053 0.355

.075 .267

.194 .350

.333 .475

.182 .325

.301 .420

.266 .392

.006 .118

.129 .233

.189 .258

0.075 0.277

.130 .284

.178 .305

.125 .320

.252 .440

-.170 .020

-.216 .007

0.078 0.289
.130 .302

.126 .292

.084 .293

.180 .396

-.114 .117

--.173 .088

-.154 .087

0.090 0.302

.133 .320

.154 .335

.007 .230

.O4O .270

-.244 .010

.347 -.092

4).034 0.180

--.156 .074

-.167 .051

.518 -.314

-.702 -.527

Top
0.81

0.98

1.88

1.84

1.83
2.73

2.71

2.80

3.57

3.48

3.48

1.89

2.09

1.94

2.72

2.64

3.61

3.55

1.84

1.88

2.08

2.63

2.58

3.63

3.63
3.62

1.93

2.09
1.96

2.59

2.61

3.60

3.59

1.88

2.67

2.69

3.57

3.24

6, deg

Bottom Top

0.82 0.05

0.95

1.82

1.80

1.83

2.71

2.70

2.83

3.61

3.55

3.57

1.84

2.00

1.95

2.68

2.61

3.64

3.59

1.92

1.79

2.13

2.69

2.66

3.55
3.56

3.61

1.92

1.99

1.98

2.57

2.64

3.54

3.55

1.82

2.73

2.75

3.62

3.61

0.06

.11

.11

.10

.16

.16

.16

.20

.20

.20

0.11
.12

.11

.16

.15

.21

.20

0.11

.ll

.12

.15

.15

.21

.21

.21

0.11

.12

.11

.15

.15

.21

.21

0.11

.15

.15

.20

.20
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Figure 4. Photograph of flow region of adaptive wall test section with plenum sidewall removed.
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Figure 14. Effect of temperature and pressure on local Mach number distribution in test section, contraction

section, and high-speed diffuser for R = 20 × 106 per foot.
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Figure 16. Local Mach number distributions on top flexible wall with linear divergence.
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